

ISAET '21

7th International Symposium on Asphalt Emulsion Technology

Exploring the Workability of Asphalt Emulsion Stabilized Cold-in-Place Recycling

Sadie Casillas – U.S. Army Engineer Research and Development Center Andrew Braham – University of Arkansas

Presentation Overview

- Introduction
- Materials
- Curing Condition Evaluation
 - Casillas, S., Braham, A. Quantifying Effects of Laboratory Curing Conditions on Workability, Compactability, and Cohesion Gain of Cold In-Place Recycling, Road Materials and Pavement Design, April 2020. DOI: 10.1080/14680629.2020.1753101
- Emulsion Performance Comparison
 - Casillas, S., Braham, A. Development of a Performance-Based Approach to Asphalt Emulsion Selection for Cold In-Place Recycling Applications, under review by Transportation Research Record, October 2021.
- Conclusions

Pavement Life Cycle

Cold in-place recycling (CIR) is a rehabilitation treatment

Pavement Rehabilitation - CIR

- Maximize investment, minimizing disruption to users/environment
- In-situ recycling (CIR) vs. cold central plant recycling (CCPR)
- Focus on CIR with asphalt emulsion

What are current CIR mix design procedures?

Existing CIR Mix Design

- AASHTO standards appear to be written through HMA lens
 - AASHTO PP 86: Emulsified Asphalt Content of Cold Recycled Mixture Designs
 - AASHTO MP 31: Materials for Cold Recycled Mixtures with Emulsified Asphalt

1. SELECTING MIXTURE COMPONENTS

- Asphalt emulsion + RAP reactivity
- Coating of RAP

2. FINAL STRENGTH AND STABILITY

- Performance of fully cured mixture

Asphalt Emulsion CIR: Semi-Bound Material

Unbound Granular Material (UGM)

- Stiffness influenced by stress state
- Target dry density
- Optimum moisture content

Asphalt Emulsion CIR

Bound HMA

- Stiffness influenced by temperature and loading rate
- Target air voids content
- Optimum asphalt binder content

Unbroken asphalt emulsion coating unbound RAP blend

Fully cured mixture, RAP bound by asphalt emulsion residue

Proposed CIR Mix Design

1. SELECTING MIXTURE COMPONENTS

- Asphalt emulsion + RAP reactivity
- Coating of RAP

2. WORKABILITY

- Mixing
- Placement

3. COMPACTABILITY

- Densification

4. COHESION GAIN

- Curing
- Increasing stiffness

5. FINAL STRENGTH AND STABILITY

- Performance of fully cured mixture

transition in

material behavior

How does asphalt emulsion influence workability?

For in-situ recycling, medium to slow setting emulsions — ample time for mixing, placement, and compaction

Quantifying Workability

- Effort required to manipulate an uncompacted material with minimum loss of homogeneity
- Utilize test methods commonly available in asphalt laboratories

Laboratory Tests Curing Conditions Loose Triaxial Test Materials Temperatures (°C): Dongre Workability Test RAP blend from • 10, 23, 40, 60 Times (minutes): local quarry CIR Modified SGC Metrics • 30, 60, 120 (3) CSS-1h Asphalt **Emulsions**

Materials

CIR Mix design selected using AASHTO MP31 and AASHTO PP86
 2.75% Asphalt Emulsion, 0.5% Cement, 2.5% Added Water

Property	AASHTO M 208 requirements	Emulsion 01	Emulsion 02	Emulsion 03
Saybolt Viscosity, 25°C (SFS)	20 – 100	55	21	37
Sieve Test (%)	< 0.10	0.00	0.04	0.01
Mean Particle Size (μm)		3.12	3.45	5.17
Residue (%)	> 57	64.1	62.6	62.8
Penetration (dmm)	40 – 90	68	54	61

Loose Triaxial Test (LTT)

- Axial load applied while confining pressure is applied using air
 - O AASHTO T296
 - \circ (3) Confining pressures (kPa): 0, 100, 200
- Relating shear strength to resistance to mixing/placing and compaction

LTT: Curing Condition Evaluation

- Sensitivity of shear strength to confining pressure mimics unbound granular material
- At O kPa, no densification just manipulation of material
 - May quantify workability
- At 100 kPa and 200 kPa, densification occurred May quantify compactability
- ↑ Curing temperature, ↓ Compactability
- Statistically significant influence of cure temperature at 100 kPa

LTT: Emulsion Comparison

- Early curing → CIR behaves as unbound
- Poor correlation to asphalt emulsion viscosity
- Highest correlation to final density and WEI-CIR
- Friction data inconclusive

- E-01: 10°C, 30 Min
- E-01: 60°C, 30 Min
- E-01: 60°C, 120 Min
- ▲ E-02: 10°C, 30 Min
- ▲ E-02: 10°C, 120 Min
- △ E-02: 60°C, 30 Min
- <u>∧</u> E-02: 60°C, 120 Min
- E-03: 10°C, 30 Min
- E-03: 10°C, 120 Min
 ■
- ☐ E-03: 60°C, 30 Min

Dongre Workability Test (DWT)

Utilizes SGC to perform strain rate controlled test, records stress/strain response of material

• The DWT index value is a ratio of stress (σ) to strain (ϵ) between 550 kPa of pressure and 650 kPa

$$DWT = \frac{\sigma_{650} - \sigma_{550}}{\varepsilon_{650} - \varepsilon_{550}}$$

Higher DWT index indicates a more workable mix

DWT: Curing Condition Evaluation

- Neither cure time nor temperature had statistically significant influence on DWT index
- DWT developed for Hot Mix Asphalt (HMA) and Warm Mix Asphalt (WMA)
 - Targets higher densities than achieved for CIR
- Constant vertical pressure different than gyratory motion used in compaction

DWT: Emulsion Comparison

- Statistically significant difference between three emulsions
- E-02 most workable
- 60°C, 120 min. not appropriate
- All results below "low workability" threshold (140) defined by Dongre for HMA

Curing Conditions (Temp, Time)

CIR Modified SGC Metrics

 Modified for use with CIR – lower densities, fewer gyrations

- Final height
- Final density (% Gmm)
- Construction Densification Index
- Workability Energy Index
- Normalized Shear Index

SGC Metrics: Curing Condition Evaluation

- Statistically sensitive to curing temperature only
- Trend shown in graph seen for all metrics
 - Normalized Shear Index (NSI)
 - Higher NSI indicates more energy required to compact
 - Moisture loss directly proportional to compactability
 - Different trend than seen with LTT –
 - ↑ Curing temperature ↑ Workability

SGC Metrics: Emulsion Comparison

- Three general groupings
 - 1. Lowest results at 10°C, 120 min; highest results 60°C, 120 min
 - 2. Highest results at 10°C, 120 min; lowest results 60°C, 120 min
 - 3. No data or unclear trends
- Metrics not consistent across three emulsions
- Final density, WEI-CIR best differentiation between three emulsions

Conclusions

- Quantifying workability beneficial for asphalt emulsion selection and understanding time available to complete mixing and placement
- LTT and DWT useful in quantifying workability of asphalt emulsion CIR
 - More robust correlation between LTT and DWT/SGC Metrics needed
- Cure temperature more significant than cure time
 - Low or intermediate temperatures recommended for cure temperature to more clearly distinguish between asphalt emulsion performance
- Compaction method influences workability which method mimics field placement?

Thank you! Questions?

Sadie Casillas - Sadie.E.Casillas@erdc.dren.mil; Andrew Braham - afbraham@uark.edu

