

International Bitumen Emulsion Federation

High Float Emulsion Residue: Its Unique Rheology and Microstructure

Justin P. Suda, P.Chem.

McAsphalt Industries Limited

CONTENT

Part 1 (2014-2015)

- BACKGROUND
- RHEOLOGY
- TECHNIQUES & EXPERIMENTATION
- RESULTS & INTERPRETATION

Part 2 (2015-2021)

- BACKGROUND
- TECHNIQUES & EXPERIMENTATION
- RESULTS & INTERPRETATION
- SUMMARY

- In Canada, the paved public road network exceeds 400,000 km
- Maintenance becoming a concern
 - Budgets
 - VOC constraints
- Need to optimize next-gen pavement preservation materials

Pavement Preservation

3 major ways to liquefy "glue":

- *Heating up bitumen (asphalt) common in hot mix asphalt application (HMA)*
 - Energy intensive
- *Cutbacks mixture of bitumen and petroleum solvents*
 - Problem with VOC emissions
- Emulsions mixture of bitumen, water and emulsifying agent
 - Environmentally responsible
 - Most cost effective

Advancement in Emulsion Formulation

• *Select and specify bitumen emulsion for surface treatments*

Current Testing Framework

- *Does NOT consider all service conditions and performance characteristics*
- *Requires knowledge of basic science that underlies emulsion systems*

Emulsion Composition

- Bitumen
 - SARA fractions, inorganic heavy metals
 - Inherent composition yields its "viscoelasticity"
- Water
 - Typically softened water
 - Favourable for addition of surfactants
- Emulsifier (surfactant)
 - Allows mixing of two immiscible liquids
 - Typically a chemical
 - Can add performance characteristics in residue

Identity of Emulsion

- Dictated by the emulsifier
 - Cationic (+)
 - Fatty amines
 - Anionic (-)
 - Fatty acids
 - High float (-)
 - Crude tall oil
 - Special type of anionic i.e. HF-100S

Emulsion Residue Formation

Yield Stress???

Materials with Yield Stress

- 1980 paper by Sutandar and Perrone claimed structure was characterize by Bingham plastic flow behaviour
- Implied concept of yield stress
 - *However, there is no rigorous way to quantify*
 - Mechanism is not fully understood

Understanding of high-float emulsion is rudimentary

- NO rigorous characterization of performance
 - Only semi-quantitative <u>float test</u> for "resistance to flow" behavior

Our Strategy (2015):

- 1. Study the rheology of HF residues
- 2. Develop a rheological model
- 3. Quantify inherent yield stress rigorous rheology
- 4. Propose an alternative to float test

- Viscoelastic materials led to the study of rheology
- Coined by Eugene Bingham
- Flow and deformation of materials when subjected to a stress

Eugene Cook Bingham (1878-1945)

Quantification Using Stress (σ) and Strain (ε)

- *Expressed as tensors for all modes of deformation*
- Only need to consider one component: **Pure shear**

Basic rheological models defined with stress and strain:

- Most common type of elastic behavior
- G is the "shear modulus"
- No resistance to deformation
- *ἑ* is the rate of strain, μ is viscosity
- Viscosity is the rate of deformation through mechanical energy into heat

AEMAS ASPHALT EMULSION MANUFACTURERS ASSOCIATION

- Elastic and viscous elements are in parallel
- Internal dissipation within material but will complete recoil
- *Elastic and viscous elements are in series*
- Flows like a liquid under constant force

Pure shear on Dynamic Shear Rheometer (DSR)

- Sample is placed between two parallel plates
- *Torque T is applied and used to calculate shear stress*
- Angle of rotation Θ is used to calculate shear strain

Setup of DSR. T is used to calculate "shear stress" and Θ is used to calculate "shear strain."

Response to Time-Varying Excitation

- Sinusoidal Excitation
 - Oscillatory excitation
 - *Phase angle* δ *denotes* "viscoelasticity"
 - Used in paving industry to define rutting parameter:

 $|G^*|/sin\delta \ge 1.00$ kPa

Problem:

- Only measured at one frequency
- Does NOT characterize non-linear viscoelastic material
- What if material was similar to K-V material???

Stress Ramp Excitation

- *Stress increases linearly with time at a constant rate α*
- *Most commonly reported is apparent viscosity:*

$$\mu_{app} = \sigma/\dot{\varepsilon}$$

 Materials with inherent yield point's (σ_y) will undergo obvious physical changes

Materials with a yield stress (viscoplastic)

- When $\sigma < \sigma_y$, material behaves like a solid
- When $\sigma > \sigma_y$, material behaves like a fluid
- *Most general model is the Herschel-Bulkley fluid:*

When $\sigma < \sigma_y : \dot{\varepsilon} = 0$ When $\sigma > \sigma_y : \sigma - \sigma_y = K(\dot{\varepsilon})^n$

Rheology and its Different Branches of Study

0

Consideration of Rheological Behavior when $\sigma < \sigma_v$

- Experimental evidence indicates that the material must be allowed to deform as a solid
- New elastic parameter for $\sigma < \sigma_y$ regime:

$$\sigma = \sigma_e + \mu \dot{\varepsilon}$$

"elastic stress"

 \odot

Given that elastic stress has two parameters, G and σ_y , σ_e in terms of ε can be expressed as:

Emulsion Manufacture

- Colloid mill
- Capability of rotating at 3450 RPM
- *Provides mechanical energy to shear and disperse bitumen in aqueous phase*

Specimens

- *1. Bitumen PG 58-28*
 - Typical grade for CoE
- 2. Emulsion A (HF-100S)
 - Made with base PG 58-28
- 3. Emulsion B
 - Made with base PG 58-28
 - Designed to FAIL "float test"

Emulsion Recipes

Emulsion	Base	Bitumen	СТО	NaOH(s)	Water
	Bitumen	(%)	(%)	(% by wt.	(%)
				CIO)	
Α	PG 58-28	62	2.2	10	35.8
В	PG 58-28	62	1.1	10	36.9

Emulsion B was specifically designed to <u>FAIL</u> the "float test" i.e. half the emulsifier (CTO) dosage of Emulsion A (recognized as HF-100S by industry standards).

Obtaining Residue by Distillation

- *ASTM D6997/ AASHTO T59*
- Requires 200g of emulsion
- Water component distilled at 260°C over ~ 1 hour
- Residual testing performed on emulsions A & B (Residue A & B)
 - Float test, DSR

Distillation set up. This figure was taken from Asphalt Emulsions Manual Series no. 19 developed by AEMA, and Asphalt Institute.

Float Test

- *ASTM D139/ AASHTO T50*
- Characterizes "consistency" by floating a plug of residue over a 60°C water bath
- Time required to float is 1200 sec

Float Test Results

Material	Time (seconds)			
PG 58-28	35			
Residue A	1200+			
Residue B	425			

- Demonstration of the effect of emulsifier dosage (CTO)
- Residue A possess "high float" quality
 - Similar to K-V model

Residue B
Residue A
PG 58-28
HF-150S
Standard Fluid
PG 64-34

Asphalt vs Mayonnaise:

Which one is "stronger" — when it comes to resisting bleeding or drainage?

Numerical Simulation

Numerical Simulation

 σ (Pa)

Numerical Simulation

2015 to 2021

Some time went by...

	ASTM D4957			DSR Flow Sweeps		
Product	Size of Tube	μ_{app}	Ė	μ_{app} @ min. $\dot{\epsilon}$	μ_{app} @ max. $\dot{\varepsilon}$	μ _{app} @ D4957 έ
HF-100S	100	191.04	1.36	229.10	163.80	198.70
HF-150P	200	587.76	0.86	206.90	171.30	184.65
HF-150S	100	103.35	2.52	117.40	87.30	92.60
HF-250S	100	46.20	5.63	39.70	36.60	34.20

For a 100 modified Koppers Tube: Max shear rate is 3.2 s^{-1} ; min. is 0.8 s^{-1} For a 200 modified Koppers Tube: Max shear rate is 1.6 s^{-1} ; min. is 0.4 s^{-1}

Passes, but likely due to a clog

Example of a rheogram

... started to question reliability of some our of HF residue results

Low High

BACKGROUND (part 2)

Current HF Residue Testing in Canada

- Float test (D139)
- Resistance to flow
- Penetration test (D5)
- Material consistency
- Viscosity test (D2171, D4957, Par. 6.2.5/A in CGSB Can2-16.5-M84)
 Absolute and Apparent Viscosity

All performed after Residue by Distillation ASTM D6997

BACKGROUND (part 2)

HF Residue Characterization Using the DSR

 Hinging on idea that the DSR can potentially measure reliable μ_{app} at various έ, could we also replace the pen, and float tests by measuring viscosities below and above the yield stress?

HF Residue Characterization Using the DSR

- Key viscoplastic shear rates, $\dot{\varepsilon}$:

Below σ_y , resistance to flow σ_y , maximum μ_{app} $-- \Rightarrow$ Metrics for HF residue susceptibility to flushing/drainage, replacing the float test

- Above σ_v , steady-simple flow $--- \rightarrow$ A better measurement of "consistency", replacing the pen. test
- Shear rate considerations for measuring μ_{avv} after 50 stress ramps
- HF-100S, 150S resistance to flow compliance, $\dot{\varepsilon}$ < 0.1 s⁻¹
- HF-250S resistance to flow compliance, $\dot{\varepsilon}$ < 0.05 s⁻¹
- Simple-fluid behavior for all HFs, $\dot{\varepsilon} > 1.0 \text{ s}^{-1}$

Only considered Residue by Distillation, what about Residue by Evapouration?

- High viscosity
- No yielding
- Behaves like a fluid

One Hour Stress Ramp Comparison at 58°C

- Demonstrated that Residue A has different physical properties from original PG 58-28 bitumen
- *High float residue possesses a yield stress*
- Developed a new hybrid rheological model for high float residue
- *Propose an alternative protocol to the Float Test (ASTM D139)*

SUMMARY (part 2)

- *Current HF residue testing is inadequate, and not equally understood*
- It is still important to measure the apparent viscosity of an HF residue well beyond its yield
 - Flow curve or stress ramp measurements could replace the current *vacuum capillary viscosity methods*
- Evaporated specimens behave more like a viscous fluid and not like a viscoplastic fluid unless residue is NOT sieved

IN THE FUTURE

- *Gather more data of varying HF grades to determine proper ramp rates and corresponding shear rates*
- Look at alternative recovery techniques to adequately emanate field conditions
- Discuss with stakeholders about continuing our research to progress to more scientific, robust, performance-based testing

ACKNOWLEDGEMENTS

iher-

International Bitumer Emulsion Federation

Contributors

- Justin Suda
- Sina Varamini
- Elijah Bickle
- Tony Kucharek

MCA Senior Management & Lab Support

- Ron Vertz
- > Allan Mayhew
- Chuck van Dyk
- > Abdul Elkadri
- Jeff Jarvis
- Evan Kohut

AEMA

- Reza Raheem
- Melissa Corrigan

THANK YOU

JUSTIN SUDA, P. Chem. R&D Regional Lead - West T: +1 (780) 960-6475 M: +1 (780) 699-8437 F: +1 (780) 960-6476

000

McASPHALT INDUSTRIES LIMITED 26120 Acheson Road, Acheson, Alberta, Canada, T7X 6B3 www.mcasphalt.com

AFPHALTEMULSION MANUFACTURERS ASSOCIATION